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Literature mining is expected to help not only with automatically sifting through huge biomed-
ical literature and annotation databases, but also with linking bio-chemical entities to appropri-
ate functional hypotheses. However, there has been very limited success in testing literature
mining methods due to the lack of large, objectively validated test sets or “gold standards”. To
improve this situation we created a large-scale test of literature mining methods and resources.
We report on a specific implementation of this test: how well can the Pfam protein family classi-
fication be replicated from independently mining different literature/annotation resources? We
test and compare different keyterm sets (MeSH terms, keywords extracted from PubMed ab-
stracts, and Gene Ontology keyterms) as well as different algorithms for issuing protein family
predictions. We find that protein families can indeed be automatically predicted from the liter-
ature. Using words from PubMed abstracts, of 3663 proteins tested, over 75% were correctly
assigned to one of 618 Pfam families. For 90% of proteins the correct Pfam family was among
the top 5 ranked families. For all tested algorithms, we also found that protein family prediction
is far superior with keywords extracted from PubMed abstracts than with GO annotations. This
suggests that although GO is becoming the standard annotation resource for gene and protein
annotation, PubMed abstracts and even MeSH keyterms are far superior as resources for liter-
ature mining. Finally, we show that Shannon’s entropy can be exploited to improve prediction
by facilitating the integration of the different literature sources tested.

1. Introduction

Biology was until recently essentially a hypothesis driven science in which ex-
periments were carefully designed to answer one or very few specific questions,

∗All authors contributed equally to the work.
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like the function of a specific protein in a specific context. In the last decade,
fueled by the widespread use of high-throughput technology, we have witnessed
the emergence of a more data-driven paradigm for biological research . This data-
driven approach to Biology creates many new analysis challenges. Since high-
throughput experiments are frequently conducted for the sake of discovery rather
than hypothesis testing, and due to the sheer amount of measured variables they
entail, it is very difficult to interpret their results. Moreover, since the goal of
many experiments is to uncover bio-chemical and functional information about
genes and proteins, there is an obvious need to understand the linkages amongst
biological entities in literature and databases which allow us to make inferences.
Literature mining16 is expected to help with those inferences; its objective is to
automatically sort through huge collections of literature and suggest the most rel-
evant pieces of information for a specific analysis task, e.g. the annotation of
proteins7. Another application is to uncover similarities of genes according to
“publication space”, or the more tongue-in-cheek term “bibliome”6.

Since literature mining hinges on the quality of the sources of literature as
well as their linkage to other electronic sources of biological knowledge, it is
particularly important to study the quality of the inferences it can provide. Indeed,
the Bibliome is not just the collection of publications and annotations available;
its usefulness ultimately depends on the quality of linking resources that allow
us to associate experimental data with publications and annotations. Interestingly,
while literature mining is receiving considerable attention in Bioinformatics, it has
not been hitherto seriously validated. Towards improving this situation, we present
here our large-scale testing and comparison of literature mining algorithms,paired
with specific bibliome resources.

In a previous study14,12, we tested how well the Pfam protein sequence fam-
ily classification18 can be replicated from independently mining PubMed as in-
dexed by the MeSH keyterm vocabulary. Here, in addition to presenting a gen-
eral method for testing bibliome resources and literature mining algorithms, we
expand on these results by testing and comparing additional bibliome resources
such as GO annotations and text extracted from PubMed abstracts, as well as ad-
ditional prediction algorithms, including a method based on Shannon’s entropy, to
combine results from different bibliome resources.

2. From Text Mining to the Bibliome: Looking for a “Gold Standard”

There exists extensive cross-linkage amongst biomedical databases which can be
exploited for bioinformatics analysis. For instance, gene chip identifiers can be
linked to protein entries in SWISSPROT which in turn can be linked to PubMed
documents. Furthermore, documents are typically indexed by semantic informa-
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tion about their content, including keywords and other types of annotations such
as: Medical Subject Headings (MeSH), the Gene Ontology (GO), PubMed ab-
stract text, the HUGO Nomenclature for human genes, etc. Therefore, in order to
fully capture the potential of the bibliome for analysis, integration and dissemina-
tion of biological knowledge, in addition to research on text mining and natural
language processing, literature mining needs more research on the quality of links
amongst the resources that make up the bibliome. Text Mining is particularly ap-
plicable to the discovery of relevant information inside text — e.g. discovering a
portion of text in a document most appropriate to annotate a given protein7. But
given the highly cross-linked nature of the bibliome, we need to emphasize on the
joint application of Information Retrieval (IR) and Text Mining.

Several research groups have been exploiting the cross-linked nature of the
bibliome, particularly with semantic annotations such as MeSH and GO, for in-
stance the systems developed by Masys et al11 and Jenssen et al9 for identifying
sets of keyterms associated with sets of genes. Tools that are similar in spirit are
PubMatrix2, MedMiner20, MeshMap19 and others. While these systems are po-
tentially very useful, the quality of their results has not been thoroughly validated.
For instance, we have applied Latent Semantic Analysis (LSA) to discover func-
tional themes13,12 from the literature for microarray experiments dealing with
the response to human cytomegalovirus infection. Though the functional themes
we discovered matched our previously published manual annotation of the same
experiments3, and even uncovered novel functional themes13,12, such validation
by a few expert biologists is done a posteriori without access to a “gold standard”.

By “gold standard” we mean a standardized test data which allows us, unam-
biguously, to decide if a given inference is correct. Homayouni et al were able
to build such “gold standard” for evaluating the performance of LSA, but only
by focusing on a very small set of genes8. Unfortunately, for data-driven experi-
ments there is no clear expectation of what functional associations are to be found.
Therefore, bibliome tools are typically tested by sampling some of their output and
presenting it to experts. The problem is that experts typically disagree or cannot
be an expert on all the topics involved. Even more systematic approaches such
as Biocreative7 suffer from variability in experts’ opinions or experts who get
tired of manually testing the output of mechanic algorithms, leading to potentially
unreliable answers.

3. Large-scale standard for bibliome informatics: Methods and Data

3.1. A general large-scale bibliome informatics test

The first requirement for our testing methodology is the existence of a biological
classificationC, accepted as a true standard, and defined on a large setP of bio-
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logical entitiesp (e.g. proteins or genes), where each entityp is associated with a
single classC(p). Given that the Bibliome is defined not only by publication and
annotation resources, but also by their linkage, we also need a high-quality link-
ing resourceLD betweenP and the documents of some publication or annotation
resourceD — whereLD(p) denotes the set of documents ofD associated with
entity p. Given aC andLD, our large-scale bibliome informatics test(LSBIT)
can be applied to any pair,〈A,KD〉, of classification algorithmA and keyterm
setKD extracted fromD — whereKD(p) denotes the set of keyterms that index
documentsLD(p) a. The objective of the LSBIT is then toestablish how well a
given algorithm A can discover a known classificationC of biological entities
P , from a publication resourceD using an associated keyterm setKD and a
bibliome linking resource LD betweenP and D .

3.2. Bibliome Resources

3.2.1. DefiningC andLD

We chose the Pfam protein sequence classification18 asC for our tests. Pfam is
a manually curated collection of protein families, currently encompassing several
thousands of families. The proteins of the same Pfam family are very similar in
sequence, which typically leads to functional similarity. Pfam is an ideal classifi-
cation for objective evaluation and comparison of Bibliome informatics due to its
being based on a physical property of proteins (sequence) which typically leads
to functional similarity. Having settled on Pfam for our classification standardC,
our biological entitiesP are proteins. Therefore, a most appropriate linking re-
sourceLD to test〈A,KD〉 with is the SWISSPROT (now UNIPROT17) database,
which is a protein sequence database curated by experts. Besides the amino acid
sequence of a protein it also lists different types of annotations, cross-references
to other databases (including the Pfam family of a protein), as well references
to relevant publications for each protein. Therefore, the LSBIT withC = Pfam
andLD = SWISSPROT, can be applied to classify proteinsp under various pairs
〈A,KD〉. The expert nature of Pfam and SWISSPROT allows us to use them as a
standard for the classification of proteins.

However, before the LSBIT may be performed, some preprocessing of the set
of proteins to be tested is necessary. We extracted all the SWISSPROT protein IDs
which contained a single Pfam classification. Multiple Pfam family assignments
occur for 15% of all SWISSPROT proteins, possibly because some proteins have
more than one classified domain. Because we are interested in constructing a
large, unambiguous data set for validating bibliome methods, we removed multi-

aWe use keyterm to refer to both keywords and keyphrases depending on available resources.
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classification proteins. We do not consider those to be erroneous in any way, but
they simply do not serve the purposes of out testing standard, which needs to be
unambiguous. After pre-processing (details in12,14), we obtained a dataset with
|P | = 15, 217 proteins fromC = 1611 Pfam families. Each proteinp is associated
with a unique Pfam familyC(p).

3.2.2. Defining publication/annotation resourcesD

Since SWISSPROT lists PubMed IDs, a very natural publication resource is
PubMed; let us denote it asDPM . Via SWISSPROT, our linking resourceLD, we
retrieve different keyterm setsKD from PubMed, detailed in the next subsection.
Another annotation resource we used was GO, which we denote asDGO. This
was done via another bibliome resource: the GOA/UNIPROT dataset provided
by the GOA project, run by the European Bioinformatics Institute (EBI). Because
we needed to compare and integrate the tests usingDPM andDGO, we looked
at a reduced set of proteins for which links to both PubMed publications and GO
annotations were found, that isP r = {p : LDP M

(p)
⋂

LDGO
(p) 6= ∅}. We also

restricted our study to Pfam families with at least 3 proteins. This reduced dataset
P r contains 3663 proteins from 618 distinct Pfam families. 179 of families con-
tain only 3 proteins; the largest 3 families contain 17 proteins. Mean and median
family size is 5.9 and 5 proteins, respectively; standard deviation is 3.3.

3.3. Keyterm SetsKD to Test

We have adapted the IR vector space model1 to represent proteins as vectors in
a keyterm space. Four different keyterm sets were used in our analysis. Three of
these sets contain keyterms extracted from PubMed (DPM ) publications associ-
ated with proteins, while the fourth was based on term annotations in the Gene
Ontology (DGO). The first keyterm setKMeSH

DP M
contains MeSH terms. MeSH

(Medical Subject Headings) is a hierarchically organized vocabulary produced by
the National Library of Medicine to index MEDLINE/PubMed.KMeSH

DP M
contains

all MeSH terms occurring in theLDP M
(p) set of PubMed records associated with

all proteinsp ∈ P r.
For the second keyterm set,KWords

DP M
, we used all words (after stop-word fil-

tering) extracted from PubMed abstracts associated with all proteinsp ∈ P r. To
build the third keyterm set,KStems

DP M
, we reduced the words inKWords

DP M
to their

linguistic stems, using a morphological normalization tool, called BioMorpher,
which we have used previously21. Finally, the fourth keyterm setKTerms

DGO
con-

tains terms from theLDGO
(p) set of GO annotations associated with all proteins

p ∈ P r. Notice that many of the annotations in GO are electronically inferred
(e.g. they are based on hits from sequence similarity searches or are transferred
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from database records). To avoid circularity in our argument we used the GO
evidence code to filter out term annotations inferred from electronic annotations
(IEA), limiting our selection to those annotations assigned due to experimental
evidence or published literature.

For each of these keyterm sets, we compute a protein-keyterm co-occurrence
matrix (details below) where each positive entry denotes that the respective
keyterm occurs in a document or annotation linked to the respective protein. The
rows of the Matrix define the protein vectors for each proteinp ∈ P r in the re-
spective keyterm space. Table 1 summarizes the number of non-zero entries for
each matrix and the average number of keyterms per protein in each of the four
keyterm sets.

Table 1. A comparison of the four keyterm sets.

KMeSH
DP M

KWords
DP M

KStems
DP M

KTerms
DGO

total protein-keyterm associations 98707 560639 484072 14583
avg. keyterms per protein 27 153 132 4

3.4. Protein Vectors and Protein Similarity

The entry for a given protein-keyterm pair in the protein-keyterm matrix co-
occurrence is a weight representing the relative importance of the keyterm for
that protein. This weight is defined by multiplying a local and a global weight for
the protein-keyterm pair. The local weight is theterm frequencytfik, defined as
the number of documents or annotations cited for proteinpi in SWISSPROT that
are also indexed by keytermk in publication resourceD being tested.

The coefficients of the protein vectors are then scaled by a global weight to
capture the relative importance of each keyterm in the space. The global weight
we applied is related to theInverse Document Frequency(IDF) in IR 5. We named
it inverse protein family frequency(IPFF) and defined it asipffk = log(NP F

nP F
k

)

whereNPF is the total number of Pfam families inC andnPF
k is the number

of Pfam families that contain a protein with at least a document/annotation in-
dexed by keytermk. Finally, the new protein-keyterm co-occurrence matrixW

is defined bywik = tfik · idfk where rowi denotes protein vectori in keyterm
dimension/columnk. Figure 1 depicts this process.

To measure how similar two proteins are in keyterm space, we used the IR
cosine measure1: given protein vectorspi andpj in a n-dimensional keyterm
space, the cosine similarityσcos between them is given by the normalized dot
product:

σcos(pi,pj) =
pi · pj

‖pi‖‖pj‖
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Protein-Keyterm
Matrix

Protein 1 (Pfam 1)
Pub 1
Pub 2

…

Protein 2 (Pfam 2)
Pub 3
Pub 4
…

Abstract Pub 1
Keyterm 1
Keyterm 2
Keyterm 3

…

Abstract Pub 2
Keyterm 4
Keyterm 5
Keyterm 6
…

SwissProt MEDLINE/PubMed

Inverse Pfam Frequency

K1  K2  K3  K4 …

K1  K2  K3  K4 …

P1 
P2 
P3
…

MeSH terms, 
general terms, 
or stems

Protein-Keyterm
Matrix

Protein 1 (Pfam 1)
Pub 1
Pub 2

…

Protein 2 (Pfam 2)
Pub 3
Pub 4
…

Protein 1
Keyterm 1 
Keyterm 2
Keyterm 3

…

Protein 2
Keyterm 4
Keyterm 5
Keyterm 6
…

SwissProt GOA_UNIPROT

Inverse Pfam Frequency

K1  K2  K3  K4 …

K1  K2  K3  K4 …

P1 
P2 
P3
…

GO terms

Figure 1. The process of building a protein-keyterm matrix using different linkage infor-
mation sources: MEDLINE/PubMed (left) and GOAUNIPROT (right)

3.5. Prediction AlgorithmsA

Our first LSBIT experiments, designed to establish how well we can predict the
Pfam family of proteins using the bibliome resources described above, tested two
classification algorithms closely related to thek-nearest neighbor algorithm4.
Given a protein keyterm vectorpi and an angleα, the first algorithm,Aα, as-
signs a score to each Pfam familyj based on the number of proteins of that family
found in a hypercone defined by the angleα and centered aroundpi, as illustrated
in figure 2(a). Thus,Aα returns a ranking of Pfam families based on this score:

Aα : Pfamj(pi, α) = |{pk ∈ pfamj : σcos(pi,pk) ≥ cos(α)}|

The family with most proteins in the neighborhood is ranked first, and so forth.
This algorithm is described in detail in12,14.

A problem with theAα algorithm is that it depends on an angleα. If α is
large, unrelated proteins may be included in the neighborhood; ifα is small the
neighborhood may contain very few proteins or may be empty, in which case no
prediction can be made. A second problem is that it is biased towards ranking
larger families first. We have adaptedAα to deal with both these issues. In the
new algorithm,AWV , every protein in the space issues a “weighted vote” for its
Pfam family (not just those inside a neighborhood hypercone):

AWV : Pfamj(pi) =

X
pk∈pfamj

σcos(pi,pk)

p
|pfamj |

The weight of each protein’s vote is given by the cosine of the angle between
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Figure 2. (a) Aα prediction algorithm: target protein neighborhood defined by the hyper-
cone with an opening angleα and centered around the target protein vector . (b)AWV

prediction algorithm: target protein and other proteins voting in proportion to their cosine
similarity to the target protein.

its vector and the vector of the protein being classified. In order to weaken the
bias towards larger families, the family score is normalized with a division by the
square root of its size. Figure 2(b) illustrates this process.AWV improves on
our first algorithm because it does not require a neighborhood angle to be defined
in advance and it always issues a prediction for any protein vector in the space.
Additionally, as we will see next, it has a higher prediction success thanAα.

4. Results: Testing〈A, KD〉

The two algorithmsAα and AWV were tested using the four keyterm sets
KMeSH

DP M
, KWords

DP M
, KStems

DP M
andKTerms

DGO
. Figure 3 shows the prediction success

of our algorithms usingKMeSH
DP M

, in terms of proteinsrecalled, i.e. the number of
proteins for which the Pfam family was predicted correctly. The first entry on the
x-axis (labelled weighted) corresponds to the weighted-voting algorithmAWV .
The remaining entries on the x-axis (labelled 0.1, 0.2, etc.) indicate the cosine of
α for theAα algorithm. The y-axis shows the number of proteins predicted out
of a total of 3663∈ P r. The black, dashed curve shows the number of proteins
for which a prediction was made for the respective neighborhood angleα. As the
cosine threshold increases, the number of predictions made byAα decreases.

AWV outperformedAα in all our tests, therefore for the other three keyterm
sets, we only display results forAWV summarized in Table 2. Noticeably, the
three keyterm sets extracted from PubMed records performed better than the one
extracted from GO annotations. This might be due to fewer GO than PubMed
keyterms per protein (see table 1). Among the three keyterm sets based on
PubMed, the two obtained from abstract words significantly outperform the one
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Figure 3. Prediction success using MeSH terms from PubMed publications.

containing MeSH terms; the stem-based keyterms provided slightly better results
than plain words.

Table 2. Prediction success forAWV .

KMeSH
DP M

KWords
DP M

KStems
DP M

KTerms
DGO

1st prediction 54.35% 75.27% 75.89% 38.08%
top 2 66.72% 84.17% 84.22% 45.65%
top 5 77.70% 88.83% 89.30% 55.53%
top 10 83.76% 91.13% 91.48% 61.86%
top 50 91.54% 94.02% 94.40% 75.59%

5. Integrating Predictions from Different Keyterm Sets

We noticed that the sets of proteins correctly predicted using different keyterm
sets do not completely overlap. In our analysis we found that Shannon’s measure
of entropy10 can be used to measure the uncertainty associated with a prediction,
and usefully exploited to combine the predictions from different keyterm spaces.

Let ρK(pi, pfamj , α) be the probability of selectingpfamj as the protein
family predicted for proteinpi using keyterm setK and a neighborhood bounded
by angleα. We estimate this probability as follows:

ρK(pi, pfamj , α) =
|{pk ∈ pfamj : σcos(pi,pk) ≥ cos(α)}|

|{pk : σcos(pi,pk) ≥ cos(α)}| .

Then, we compute the entropy of a prediction for proteini as follows:

HK(pi, α) =

8<
:

∞ if |{pk : σcos(pi,pk) ≥ cos(α)}| = 0

−
X

j

ρK(pi, pfamj , α) log ρK(pi, pfamj , α) otherwise.
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Finally, we compute the prediction uncertainty of proteini using keyterm setK,
UK(pi), as the average entropy on a finite set of angle thresholdsT :

UK(pi) =

�
∞ if ∀ α ∈ T, HK(pi, α) = ∞

〈HK(pi, α)〉 : α ∈ T ∧ HK(pi, α) 6= ∞.

Using the uncertainty measure, we implemented and tested a novel protein family
prediction algorithm that integrates predictions issued by each keyterm set. LetK
be a set of keyterm sets. ForK ∈ K, let PfamK

j (pi) be the score assigned
to protein familyj when predicting proteini using keyterm setK. Then, our
integration algorithm based on uncertainty,AU is implemented as follows:

AU : PfamUK
j (pi) = PfamK

j (pi) whereK = argmin
K′∈K

UK′(pi).

As a baseline for comparison, we implemented a simple prediction algorithm,
A〈K〉, that also integrates the predictions issued by the four keyterm systems by
computing the average score〈PfamK

j (pi)〉 over all K ∈ K. Table 3 summa-
rizes the results obtained by these algorithms, highlighting the usefulness of an
uncertainty-based method for the top predictions. Indeed, in addition to clearly
outperformingA〈K〉, AU outperforms the best results ofAWV with a single
keyterm set (KStems

PM ) (see table 2) for correct first and top 2 predictions.

Table 3. Prediction with combined
keyterm sets.

A〈K〉 AU

1st prediction 70.84% 77.15%
top 2 80.02% 84.77%
top 5 87.50% 88.86%
top 10 91.35% 90.88%
top 50 95.93% 93.80%

6. Discussion and Conclusions

Our experiments show that the Pfam classification of SWISSPROT proteins is
quite well inferred, independently, from the publication resources and associated
keyterm sets (MeSH, GO, PubMed abstracts), we tested with the LSBIT. The pub-
lication space with associated keyterms largely captures the functional informa-
tion structure represented by the Pfam classification. Moreover, we have shown
that Shannon’s measure of entropy can be used to integrate the predictions from
various keyterm sets, resulting in an improved protein Pfam prediction algorithm.

An interesting finding for us was that for all tested algorithms, protein family
prediction is far superior with keywords extracted from PubMed abstracts than
with words extracted from GO annotations. This suggests that although GO is be-
coming the standard annotation resource for gene and protein annotation, PubMed
abstracts, and even MeSH keyterms, are far superior as resources for literature
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mining. Given our results, it is fair to conclude that PubMed abstracts and MeSH
terms contain more semantic and functional information to classify proteins. In
future work, we will investigate what specific information is missing in the GO
annotations which causes the lower performance.

Our results also show that the simple vector space model from IR is capable
of well representing the semantics entailed in PubMed abstracts for protein family
prediction: e.g. for 90% of proteins the correct Pfam family was among the top 5
ranked families (see table 2). In preliminary tests, we have observed that LSA im-
proves the results only when using PubMed abstract words, and not with the other
keyword sets. These results suggest that abstract keyterms have more synonymy
and polysemy than MeSH and GO, but the details of that analysis are forthcoming.
In future work we intend to produce working bibliome informatics tools that build
up on the knowledge and algorithms of this study. We will also extend this study
with additional algorithms and resources. This includes extending our algorithms
by exploiting the Ontology nature of MeSH and GO with similarity measures,
testing additional uncertainty-based methods, and methods based on our network
analysis methodology21,15.

Given the many biomedicine resources available, the bibliome as a resource
for automatic functional annotation comes out strengthened from our testing
methodology and experiments, as well as from our uncertainty-based integration
method.
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